LINEAR SYSTEMS

Instructions: - Show all your work
- Use a pencil
- Calculators are permitted

PART A

1. This graph represents the cost to produce pizza. Graph B represents the daily cost to produce pizza. Graph B represents the daily income from the sale of pizzas.

 a) Describe what the point of intersection represents.

 b) How many pizzas must be sold before there is a profit (that is, the income is greater than the cost)? Explain.

2. Solve this linear system by graphing. Check your solution.

 y = 2x + 5
 y = 4x + 3

 Solution: (,)

 Check:
3. Solve each linear system by substitution. Write your steps. Check your solutions.
 a) \(y = 3x + 2 \)
 b) \(x + y = 4 \)
 c) \(5x - 3y = 47 \)
 y = 6x - 1
 x - y = 5
 6x - y = 7

4. Solve each linear system by elimination. Show your steps. Check your solutions.
 a) \(x + y = 5 \)
 b) \(3x + 2y = 18 \)
 c) \(2x + 5y = 2 \)
 x - y = 3
 x + y = 1
 3x - 2y = -16
5. Eight thousand people attended a rock concert. The ticket prices were $50 and $30. The total revenue from the ticket sales was $250 000. How many tickets of each price were sold?

6. A golf club charges its members an annual fee, and a greens fee for each golf game played. In one year, Ron played 12 games and paid $814. In the same year, Jane played 29 games and paid $1188.
 a) What is the annual fee?
 b) What is the greens fee?
PART B – Graphing Calculator

1. Solve each linear system using a graphing calculator. Round to two decimal places.
 a) \(y = 0.3x + 1 \)
 b) \(-2.4x + y + 5 = 0 \)
 \(y = -1.2x - 3 \)
 \(-0.45x + y - 1 = 0 \)
 Solution: \((,) \)
 Solution: \((,) \)

2. A company produces compact discs. Each disc sells for $8. The income, \(C \) dollars, from the sale of \(x \) discs is given by \(C = 8x \). The cost to produce \(x \) discs is given by \(C = 4x + 48 \, 000 \). Use the following WINDOW settings: \(X_{\text{min}} = 0, \ X_{\text{max}} = 16 \, 000, \ X_{\text{scl}} = 1 \, 000, \ Y_{\text{min}} = 0, \ Y_{\text{max}} = 150 \, 000, \ Y_{\text{scl}} = 10 \, 000, \ X_{\text{res}} = 1 \)
 a) Solve this linear system:
 \(C = 8x \)
 \(C = 4x + 48 \, 000 \)
 Solution (, ,)

 b) What does the point of intersection represent?

 c) How many discs must be sold before there is a profit (that is, the income is greater than the cost)?

3. Amherstburg and Somewhereville are two towns in Ontario. They are 350 km apart. Car A travels from Somewhereville to Amherstburg at an average speed of 70 km/h. Its journey is described by the equation \(d = 350 - 70t \). Car B travels from Amherstburg to Somewhereville at an average speed of 80 km/h. Its journey is described by the equation \(d = 80t \).
 For each car, \(d \) kilometers represents its distance from Amherstburg after driving for \(t \) hours.
 a) Solve the linear system formed by the two equations.

 WINDOW: \(X_{\text{min}} = \)
 \(X_{\text{max}} = \)
 \(X_{\text{scl}} = \)
 \(Y_{\text{min}} = \)
 \(Y_{\text{max}} = \)
 \(Y_{\text{scl}} = \)
 \(X_{\text{res}} = 1 \)
 Solution:

 b) What does the point of intersection represent?